# **Loadbreak Apparatus Connectors**



**Electrical Apparatus** 

### 200 A 15 kV Class Loadbreak Elbow Connector with Optional Integral Jacket Seal

500-10-7

#### **GENERAL**

The Cooper Power Systems Loadbreak Elbow Connector is a fully-shielded and insulated plug-in termination for connecting underground cable to transformers, switching cabinets and junctions equipped with loadbreak bushings. The elbow connector and bushing insert comprise the essential components of all loadbreak connections. The Cooper Elbow Connector is a fully rated 200 A switching device, designed in accordance to IEEE Std 386™ standard - latest revision.

Cooper Loadbreak Elbows are molded using high quality peroxide-cured insulating and semi-conducting EPDM rubber. Standard features include a coppertop connector, tin-plated copper loadbreak probe with an ablative arc-follower tip and stainless steel reinforced pulling-eye. An optional capacitive test point, made of corrosion resistant plastic, is available for use with fault indicators (see Catalog Section 320-40 and 320-42).

Cable ranges are designed to accept a wide range of cable conductor and insulation sizes with just three elbows and accommodate cable manufactured to either **AEIC** or **ICEA** standards.

The coppertop compression connector is a standard item to transition from the cable to the loadbreak probe. An aluminum crimp barrel is inertia-welded to a copper lug. The aluminum barrel makes the connector easy to crimp and the copper lug ensures a reliable, tight, cool operating connection with the loadbreak probe.

### OPTIONAL INTEGRAL JACKET SEAL

The optional integral jacket seal provides a quick and easy means to sealing the cable jacket to prevent moisture ingress. Our jacket seal is molded to the loadbreak elbow eliminating the need for separate cable sealing products. It's available with braided ground strap/bleeder wire for terminating Tape shielded cable. (See Figure 5.)



Figure 1. Loadbreak Elbow Connector with optional integral jacket seal and without test point shown.

Figure 1A (right)
Loadbreak Elbow without jacket seal and with test point.

1111 • Supersedes 0310

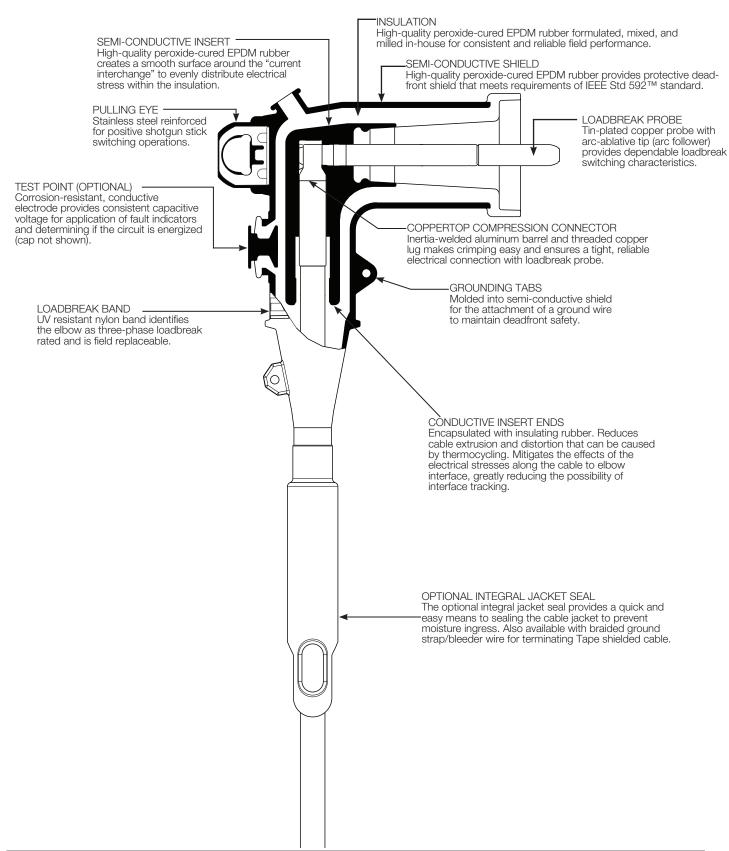



Figure 2.
Cutaway drawing shows design detail.

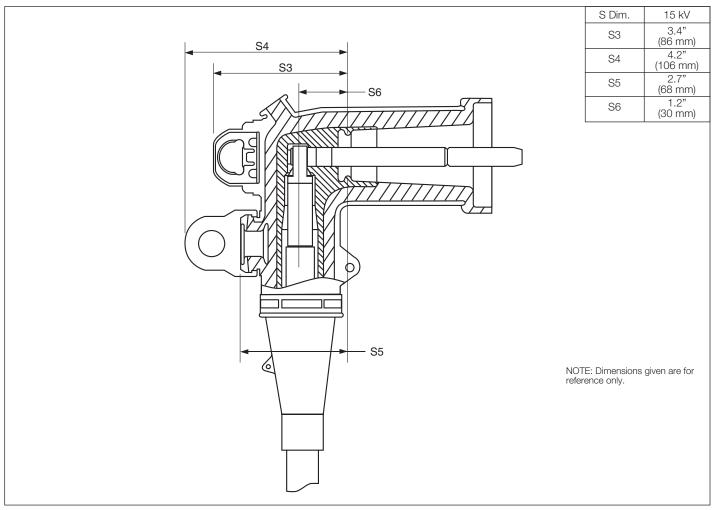



Figure 3. Elbow profile and stacking dimensions as referenced in IEEE Std 386<sup>TM</sup> standard.

#### **INSTALLATION**

Cable stripping and scoring tools, available from various tool manufacturers, are recommended for use when installing loadbreak elbows. After preparing the cable, the elbow housing is pushed onto the cable. The loadbreak probe is threaded into the coppertop connector using the supplied installation tool or an approved equivalent. Use a shotgun stick to perform loadmake and loadbreak operations. Refer to Installation Sheet S500-10-7 for details.

#### **PRODUCTION TESTS**

Tests conducted in accordance with IEEE Std 386™ standard:

- AC 60 Hz 1 Minute Withstand 34 kV
- Minimum Corona Voltage Level— 11 kV
- Test Point Voltage Test

Tests conducted in accordance with Cooper Power Systems requirements:

- Physical Inspection
- Periodic Dissection
- Periodic X-ray Analysis

TABLE 1
Voltage Ratings and Characteristics

| •                              |      |
|--------------------------------|------|
| Description                    | kV   |
| Standard Voltage Class         | 15   |
| Maximum Rating Phase-to-Phase  | 14.4 |
| Maximum Rating Phase-to-Ground | 8.3  |
| AC 60 Hz 1 Minute Withstand    | 34   |
| DC 15 Minute Withstand         | 53   |
| BIL and Full Wave Crest        | 95   |
| Minimum Corona Voltage Level   | 11   |

Voltage ratings and characteristics are in accordance with IEEE Std 386™ standard.

TABLE 2 Current Ratings and Characteristics

| Ourient riatings and Onaraotoristics |                                                                                    |  |  |
|--------------------------------------|------------------------------------------------------------------------------------|--|--|
| Description                          | Amperes                                                                            |  |  |
| Continuous                           | 200 A rms                                                                          |  |  |
| Switching                            | 10 operations at 200 A rms at 14.4 kV                                              |  |  |
| Fault Closure                        | 10,000 A rms symmetrical<br>at 14.4 kV for 0.17 s after<br>10 switching operations |  |  |
| Short Time                           | 10,000 A rms symmetrical for 0.17 s                                                |  |  |
|                                      | 3,500 A rms symmetrical for 3.0 s                                                  |  |  |

Current ratings and characteristics are in accordance with IEEE Std  $386^{\text{TM}}$  standard.

#### **ORDERING INFORMATION**

The Elbow kits are packaged in a heavy duty polyethylene bag. There are 20 bagged kits to a carton. Individual boxed kits are also available by special part number. To order a 15 kV Class Loadbreak Elbow Kit follow the easy steps below.

Each kit contains:

- Standard Elbow Body or Elbow Body with Jacket Seal
- Coppertop Compression Connector
- Loadbreak Probe
- Probe Installation Tool
- Silicone Lubricant
- Mastic Strips (Jacket Seal Elbow Only)
- Installation Instruction Sheet

STEP 1: Determine the cable's diameter over the electrical insulation as shown in Figure 4 (including tolerances) from cable manufacturer. Then identify a cable range from Table 3 that brackets the minimum and maximum insulation diameters. Select the CABLE RANGE CODE from the far right column.

STEP 2: Identify the conductor size and type in Table 4 and select the CONDUCTOR CODE from the far right column.

STEP 3: For an elbow kit with a capacitive test point order:

LE215 CABLE RANGE CONDUCTOR T

For an integral jacket seal elbow kit with a capacitive test point order:

LEJ215 CABLE RANGE CONDUCTOR T

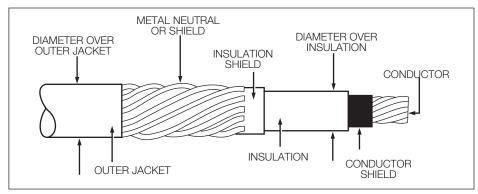



Figure 4. Illustration showing typical construction of high voltage underground cable.

For an elbow kit without a capacitive test point order:

LE215 CABLE RANGE CONDUCTOR CODE

For an integral jacket seal elbow kit without a capacitive test point order:

LEJ215 CABLE RANGE CODE CODE

For an elbow kit without a compression connector, use "00" for the conductor code.

For an elbow kit with a hold down bail assembly included, insert a "B" after the test point option code.

**STEP 4:** For optional braided ground strap/bleeder wire for terminating tape shielded cable, insert "**GS**" after test point and/or bail option code. (**Integral Jacket Seal Elbow Only**)

**STEP 5:** (Optional) For an elbow kit individually packaged in a corrugated cardboard box, insert an "X" as the last character in the part number.

Table 3 Cable Range for Loadbreak Elbow

| Inches          | Millimeters | Cable<br>Range<br>Code |
|-----------------|-------------|------------------------|
| 0.495" - 0.585" | 12.6 - 14.9 | CCA*                   |
| 0.575" - 0.685" | 14.6 - 17.4 | CCB*                   |
| 0.610" - 0.970" | 15.5 - 24.6 | AB                     |
| 0.750" - 1.080" | 19.1 - 27.4 | CC                     |
| 0.890" - 1.220" | 22.6 - 30.0 | DD                     |

<sup>\*</sup> Uses 5 kV cable adapter. (For use with "CC" range elbow only.)

TABLE 4 Conductor Size and Type

|      | tranded or<br>ressed | Compact or Solid |                 | CONDUCTOR |
|------|----------------------|------------------|-----------------|-----------|
| AWG  | mm <sup>2</sup>      | AWG              | mm <sup>2</sup> | CODE      |
|      | No Connector         |                  |                 |           |
| #6   | 16                   | #4               | _               | 01        |
| #4   | _                    | #3               | 25              | 02        |
| #3   | 25                   | #2               | 35              | 03        |
| #2   | 35                   | #1               | _               | 04        |
| #1   | _                    | 1/0              | 50              | 05        |
| 1/0  | 50                   | 2/0              | 70              | 06        |
| 2/0  | 70                   | 3/0              | _               | 07        |
| 3/0  | _                    | 4/0              | 95              | 08        |
| 4/0  | 95                   | 250              | 120             | 09        |
| 250* | 120                  | 300              | _               | 10        |

<sup>\*</sup>Compressed stranding only.

**EXAMPLE:** Select an integral jacket seal elbow kit with a capacitive test point for use on a #1 compact cable with a minimum insulation diameter of 0.770" and a maximum diameter of 0.830".

**STEP 1:** From Table 3, identify the cable range 0.610"—0.970" and select the "**AB**" CABLE RANGE CODE.

**STEP 2:** The conductor size is a #1 and the type is compact.

From Table 4, under the column "Compact or Solid" identify #1 and select the "**04**" conductor code.

STEP 3: Order catalog number.

LEJ215AB04T

TABLE 5 Replacement 2.88" Long Coppertop Connectors

| Conductor Size |                 |                  |                 |         |
|----------------|-----------------|------------------|-----------------|---------|
| Concentric or  | Compressed      | Compact or Solid |                 | Catalog |
| AWG            | mm <sup>2</sup> | AWG              | mm <sup>2</sup> | Number  |
| #6             | 16              | #4               | _               | CC2C01T |
| #4             | _               | #3               | 25              | CC2C02T |
| #3             | 25              | #2               | 35              | CC2C03T |
| #2             | 35              | #1               | _               | CC2C04T |
| #1             | _               | 1/0              | 50              | CC2C05T |
| 1/0            | 50              | 2/0              | 70              | CC2C06T |
| 2/0            | 70              | 3/0              | _               | CC2C07T |
| 3/0            | _               | 4/0              | 95              | CC2C08T |
| 4/0            | 96              | 250              | 120             | CC2C09T |
| 250*           | 120             | 300              |                 | CC2C10T |

## **ACCESSORIES**



Figure 5. Braided Ground Strap Accessories (see Table 6).



Figure 6. 5 kV Cable Adapter (see Table 6).

### TABLE 6 Replacement Parts

| Description                                                                                                | Catalog<br>Number         |
|------------------------------------------------------------------------------------------------------------|---------------------------|
| Hold Down Bail Assembly                                                                                    | 2638351C01B               |
| 5 kV Cable Adapter (for use with "C" Elbow size only), .495" — .585" .575" — .685"                         | CA225A<br>CA225B          |
| Loadbreak Band<br>(package of 25)                                                                          | 2639139B01B               |
| Probe Kit (includes<br>Probe, Installation Tool,<br>Silicone Lubricant,<br>Installation Instruction Sheet) | PK215                     |
| Loadbreak Probe<br>Installation Tool                                                                       | 2602733A01                |
| Loadbreak Probe Only                                                                                       | 2637552C03                |
| Silicone Grease<br>0.175 oz tube (5 grams)<br>5.3 oz tube (150 grams)                                      | 2603393A03<br>2605670A02M |
| Includes Ground Braid,<br>Constant Force Spring and<br>Mastic                                              | GRDBRAIDKIT               |



Optional Bail Assembly (see Table 6).

<sup>\*</sup> Compressed stranding only.

Note: Coppertop compression connector may be used on both aluminum and copper cable conductors.

This page intentionally left blank.

© 2011 Cooper Industries. All Rights Reserved. Cooper Power Systems is a valuable trademark of Cooper Industries in the U.S. and other countries. You are not permitted to use the Cooper Trademarks without the prior written consent of Cooper Industries. IEEE Std 386<sup>™</sup> and IEEE Std 592<sup>™</sup> standards are trademarks of the Institute of

IEEE Std 386" and IEEE Std 592" standards are trademarks of the institute of Electrical and Electronics Engineers, Inc. IEEE is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc., (IEEE). This publication/product is not endorsed or approved by the IEEE.

One Cooper | www.cooperpower.com | Online



2300 Badger Drive Waukesha, WI 53188 USA